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We wish to record herein the asymmetric reduction of two types 
of ketones RCOR1 where R = Me, R1 = alkyl (primary, sec­
ondary, and tertiary) for type I ketones and R = alkyl (primary), 
R1 = alkyl (primary, secondary, and tertiary) for type II. The 
steric demands of R and R1 being similar in both types of ketones, 
attainment of high enantiomeric excess in the reduction has been 
extremely challenging.' Successful examples are scarce and 
scattered (e.g., A-G in Table I) and there is no record of a reagent 
or reagents which meet the requirements set for the double-
asymmetric strategy.2 This difficult objective has been achieved 
in large measure through the use of {R,R)- or (S,S)-2,5-di-
methylborolane (I).3 The enantiomeric excess of hydroxyl 
compounds derived from type I ketones is 99-100% in most cases. 
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Thus, treatment of the dihydridoborate 2 (1.2 equiv) in pentane4 

with 1.4 equiv of methanesulfonic acid (eq 1) provides reagent 

(1) For recent reviews on asymmetric ketone reduction, see: (a) Morrison, 
J. D. Asymmetric Synthesis: Academic Press: New York, 1983; Vol. 2, 
Chapters 2-5. b) Brown, H. C. Modern Synthetic Methods IV; in press, (c) 
Hawkins, J. M. Ph.D. Dissertation, Massachusetts Institute of Technology, 
1986. 

(2) Masamune, S. Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., 
Int. Ed. Engl. 1985, 24, 1. 

(3) Masamune, S. Kim, B. M.; Petersen, J. S.; Sato, T.; Veenstra, S. J.; 
Imai, T. J. Am. Chem. Soc. 1985, 107, 4549. 

(4) Stored as a standard stock solution (see ref 3). The borohydride itself 
reduces dialkyl ketones with low percent ee (Sato, T.; Masamune, S., un­
published results). 

I which is comprised of 1.0 equiv of 1 and 0.2 equiv of 2,5-di-
methylborolanyl mesylate.5 Reagent I was used to reduce a set 
of dialkyl ketones (1 equiv). 
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Table I summarizes the results obtained with reagent I and 

compares them with those obtained earlier with the known chiral 
reagents A-G. While methyl, unbranched primary alkyl ketones 
(entries 1 and 2) are reduced with approximately 80% ee, 
branching at the /3-position of the primary chain (in R1) brings 
about near perfect asymmetric induction (entries 3-6). Therefore, 
it is not surprising that methyl, secondary and tertiary alkyl ketones 
are converted into the essentially enantiomerically pure hydroxyl 
compounds (entries 7-10). More remarkably, reduction of two 
type II ketones exhibits asymmetric inductions as high as 96% 
ee (entries 11, 12). Note the absolute configurations of the product 
alcohols that result from the reduction with (R,R)-1 are all R. 

Encouraged by the above results we have carried out several 
typical double-asymmetric reductions of chiral ketones under 
conditions identical with or similar to those used above.6 Re­
duction of pregnenolone (4) is representative. With the aid of 
(achiral) reagent II, prepared from the dihydridoborate corre­
sponding to achiral 2,5-m-dimethylborolane (la), the diaster-
eofacial selectivity (4a/4b) of 4 is estimated to be 7.5. Preselection 
of a chiral reagent for matched and mismatched pairs can be 
readily made and reductions of 4 with (R,R)-\ and (S,S)-I provide 
a mixture of the corresponding alcohols 4a and 4b in a ratio of 
990:1 (matched) and 1:73 (mismatched), respectively. The 
demonstrated "reagent-controlled" diastereoselections are indeed 
remarkable and are predicted by the now-established rule of 
double-asymmetric synthesis. 

While Reagent I constitutes a powerful synthetic tool, the 
mechanism of its asymmetric induction is not straightforward. 
2,5-Dimethylborolanyl mesylate present in reagent I plays a 
catalytic role, and this intriguing feature is detailed in the following 
paper.5 

Procedure for the Reduction of a Ketone. Compound (R,R)-2 
(20.38 mmol) in pentane (70 mL) was stirred with methane­
sulfonic acid (23.77 mmol) at room temperature for 2 h and the 
resulting mixture was cooled to -20 0C. 4-Methyl-2-pentanone 
(1.73 g, 16.98 mmol) was added and after the mixture was stirred 
48 h at -20 0C precipitated MeSO3Li was removed by the fil­
tration through a Celite bed and washed with pentane (2X5 mL). 
The combined mixture of the filtrate, washings, and a solution 
of 2-amino-2-methyl-l-propanol (20.37 mmol) in ether (10 mL) 
was vigorously stirred at room temperature for 1 h to precipitate 
the borolane-amino alcohol complex as a white solid. The mixture 
was filtered and the precipitate washed with a 1:4 ether/pentane 
mixture (3X10 mL). The filtrate and washings were combined 
and processed in the usual manner. Final distillation provided 
1.41 g (81%) of 4-methyl-2-pentanol, bp 46-47 0C (17 torr). 

The crude amino alcohol complex (3.6 g, 97%) was recrys-
tallized from either isopropyl alcohol or 1,2-dimethoxyethane to 
provide crystals which consisted of 99.28% of R,R, 0.45% of S,R, 
and 0.27% of S,S isomer (99.01% ee). 

(5) Masamune, S.; Kennedy, R. M.; Petersen, J. S.; Houk, K. N.; Wu. 
Y.-d., following paper in this issue. 

(6) These results are summarized in the supplementary material. 
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Table I. Asymmetric Reduction of Type I and Il Ketones with Reagent I and Reagents A-G 

entry 

with (R,R)-\ of 98.4% ee 

ketone 
reactn 

conditns" alcohol 3 

isolated 
isolated product, [<*]25n °f *ne e e °f 

prod % yield isolated product 3, %* (R,R)-

% ee of 3 corrected for the 
enantiomeric purity of the chiral reagent (abs config) 

B* \y E* 

1 ? A,C 3a 

3 

3a 

3 

3 

3 

3a 

3b 

3a 

3b 

(benzoate 
of 3) 

[acetate 
of 3) 

75 

68 

74 

81 

76 

69 

69 

83 

72 

77 

-36.7° (c 
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72 

+23.8° (c 3.00, 
EtOH)' 
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EtOH)" 

91.0 

95.2 

80.3 (R) 

81.3 (R) 

98.6 (R) 

100 (R) 

98.9 (R) 

100 (R) 

99.5 (R) 

99.3 (R) 

99.3 (R) 

92.5 (R) 

96.8 (R) 

76 (S) 43 (5) 4 ( ) 

79 (S) 48 (S), 
63 (S) 

30 (S) 

58 (R) 29 (R) 61 (R) 24 (R) 

61 (R) 

77(R) 13(S) 

68 (S) 62 (S ) , 32 ( ) 60 (R) 
90 (S ) 

71 (R) 

2 (S) 0.7 (S) 95 (S) 78 (R) 

48 (R) 

"Reaction of 1.0 mmol of a ketone with reagent 1 prepared from 1.2 mmol of (R,R)-2 and 1.4 mmol of MeSO3H (A) in hexane or (B) in pentane and (C) at -20 °C for 48 h or (D) at 
0 °C for 24 h. h Estimated by capillary GC analysis of the (R)-MTPA ester of 3 unless otherwise noted. c Reagent A: NB enantride derived from (-)-nopoI (Midland, M. M.; Kazubski, 
A. J. Org. Chem. 1982, 47, 2495). J Reagent B: alpine-borane derived from (+)-o-pinene (Midland, M. M.; McLoughlin, J. I. J. Org. Chem. 1984, 49, 1316; Brown, H. C ; Pai, G. G. J. 
Org. Chem. 1985. 50, 1384) When two percent ee's are given for a ketone 3, the higher one is recorded for the reduction under a high pressure of 6000 atom (Midland and McLoughlin). 
'Reagent C: diisopinocampheylchloroborane derived from (+)-a-pinene (Chandrasckharan, J.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1985, 50, 5446). Also see ref lb. 
^Reagent D: mixture of (S)-(-)-2-amino-3-methyl-l,I-diphenylbutan-l-ol and 2 equiv of borane (ltsuno, S.; lto, K.; Hirao, A.; Nakahama, S. J. Org. Chem. 1984, 49, 555; J. Chem. Soc, 
Chem. Commun. 1983, 469). * Reagent E: mixture of Af,/V'-bis[(S)-a-methylbenzyl]suIfamide, benzylmethylamine, and 1 equiv of LiAlH4 (hawkins, J. M.; Sharpless, K. B. / . Org. Chem. 
1984, 49, 3861). h Reagent F: mixture of diisobutylaluminum hydride, 1 equiv of SnCI2, and 1 equiv of (S)-1 -methyl-2-(piperidinomethyl)pyrrolidine (Oriyama, T.; Mukaiyama, T. Chem. 
Lett. 1984, 2071). 'Reagent G: Lithium aluminum hydride modified with equivalent molar amounts of (S)-2,2'-dihydroxy-l,l'-binaphthyl (BINAL-H) and ethanol (Noyori, R.; Tomino, 
L; Tanimoto, Y.; Nishizawa, M. J. Am. Chem. Six: 1984, 106, 6709, 6717). 'Lit. [a]20

D +39.23° (neat) for the (S)-benzoate (Kenyon, J.; Pickard, R. H. J. Chem. Soc. 1915, 115). 
'Estimated by 1H NMR of its MTPA ester, the CH2CW3 signals are compared. 'Lit. [«]2I

D +10.1° (EtOH) for the S alcohol (Hill, R. K. J Am. Chem. Soc. 1958, 80, 1611). "LiI. [a]27
D 

+20.0° (neat) for the S alcohol (Mislow, K.; O'Brien, R. E.; Schaeffer, H. J. Am. Chem. Soc. 1962, 84, 1940). [a]D not available for benzoate. "Lit. [«]27
D +24.8° (neat) for the S alcohol.™ 

"Lit. [a]D+41.8° (C6H6) for the S alcohol (Pickard, R. H.; Kenyon, J. J. Chem. Soc. 1914, 1115). (The optical rotation was measured "at the temperature of the laboratory") ^LiI. [<*]26
D 

+38.65° (CHCl3) for the (S)-benzoate (Stevens, P. G. J. Am. Chem. Soc. 1933, 55, 4237) (calcd from 22.8% ee). 'Measured at 28.5 °C, lit. \a]2'D -10.6° (CCl4) for the (S)-acetate.3 

'Measured at 28.5 °C, lit. [a]26
D +41.84° (CHCl3) for the (S)-benzoate'' (calcd from 63.5% ee). 'No data of [a]D available for either 3 or its derivatives. 'Lit. [a]D +26.56° (EtOH) 

(Pickard, R. H.; Kenyon, J. J. Chem. Soc. 1913, 103, 1923). "Lit. [«]"„ -9.48° (neat) (Levine, P. A.; Marker, R. E. J. Biol. Chem. 1931, 90, 669). 
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The preceding paper describes the asymmetric reductions of 
prochiral dialkyl ketones: Reagent I which contains dimeric 
(/?,/?)-2,5-dimethylborolane (1-D) (see Scheme I for the struc­
tures) provides the R alcohols of high enantiomeric purity.1 These 
results surprised us, mainly because dialkyl ketones are iso-
structural with the corresponding terminal (type I) alkenes which, 
with 1-D, undergo hydroboration with insignificant asymmetric 
induction.2 No reasonable explanation for this apparent anomaly 
was immediately available. The accumulated evidence described 
below indicates, however, a rationalization for the observed high 
asymmetric induction. We propose the following mechanism for 
this reaction: A ketone forms the complex 2 with (R,R)-2,5-
dimethylborolanyl mesylate (3) (Scheme I, eq 3) which is present 
in reagent I and subsequently complex 2 reacts with monomeric 
1 (eq 1 and 4). The transition state of the last crucial step is also 
proposed and its geometry is evaluated with the aid of a com­
bination of ab initio and MM2 computations. 

Experiment Set 1. Treatment of lithium dihydridoborate (4)2 

in hexane with dimethyl sulfate (1.2 equiv) provided 1-D (11B 
NMR <5 31.5) as the sole boron-containing species. Reduction 
of 2-octanone (5) with 1-D, free from 3, followed three-halves-
order kinetics, first order in 5 and one-half order in 1-D to provide 
(S)-2-octanol with 4% ee (cf. hydroboration of type I olefins).2 

The rate constant was k}/2 = 7.0 X 10"4 M"1^ at 29.9 0C.3 Thus, 
this reduction (eq 1 and 2) proceeded in a manner expected from 
the reduction of 5 with dialkylboranes4 and does not bring about 
high asymmetric induction (81% ee) observed in the reaction with 
reagent I.' 

Set 2. Methanesulfonic acid (2 equiv) reacted with 4 to form 
mesylate 3 which was isolated and characterized (e.g., 11B NMR 
5 62.2). Thus, it was confirmed spectroscopically that reagent 
I prepared from 4 (1.2 equiv) and methanesulfonic acid (1.4 equiv) 

(1) Imai, T.; Tamura, T.; Yamamuro, A.; Sato, T.; Wollmann, T. A.; 
Kennedy, R. M.; Masamune, S., preceding paper in this issue. 

(2) Masamune, S.; Kim, B. M.; Petersen, J. S.; Sato, T.; Veenstra, S. J. 
J. Am. Chem. Soc. 1985, 707, 4549. 

(3) Detailed in the supplementary material, the kinetic data were obtained 
with the aid of 11B NMR spectrocopy (Varian XL-300). 

(4) Brown, H. C; Chandrasekharan, J.; Wang, K. K. Pure Appl. Chem. 
1983, 55, 1387. 
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contained 1-D (1.0 equiv as monomer) and 3 (0.2 equiv) (Scheme 
II). Addition of ketone 5 (1 equiv) to 3 in hexane shifted its "B 
NMR signal to <5 44.5,3 indicating 3, a strong Lewis acid, formed 
complex 2 with 5. Thus, at the initiation of the ketone reduction 
(1.0 equiv of 5 used), the solution contained 1-D (1.0 equiv) and 
an equilibrium mixture of 2, 3, and 5 (eq 1 and 3). 

Set 3. 2-Octanone was reduced at -10.0 0C with 1-D in the 
presence of varying amounts of 3. As the amount of 3 increased, 
the following trends were evident.3 The reduction accelerated, 
the kinetic order changed from three-halves as observed in the 
absence of 3 to first order, and the percent ee of the product 
2-octanol became higher. With 0.2 equiv of 3, the first-order rate 
constant approximated Zc1 = 12.4 X 10"4 s"1 and the ee of octanol 
was close to 80.4%, both being the highest values attainable at 
-10.0 0C.3 With 1-D (free from mesylate 3) hydroboration of 
the highly reactive 1-decene and reduction of butyraldehyde (also 
highly reactive) proceeded with first-order rate constants of Ic1 

= 12.1 X 1O-4 and 11.6 X 10"4 s_1 at -9.5 0C, respectively. These 
three values of Ic1 agree well and should represent the rate constant 
of a step common to the three reactions (eq 1). 

Proposed Mechanism and Transition State. Reduction of ketone 
5 with 1-D follows three-halves-order kinetics, typifying the be­
havior of a slow-reacting ketone toward a dialkylborane.4 As 
shown in eq 1 and 2, an equilibrium dissociation of 1-D is followed 
by a slow reaction of 1 with 5. The change in kinetic order from 
three-halves to first order outlined in experiment set 3 demands 
the involvement of an "activated ketone" which reacts fast enough 
to render the dissociation of 1-D into 1 rate-determining as ob­
served in hydroboration and reduction of reactive substrates.4 We 
propose this "activated ketone" is complex 2 in which the boron 
atom of 3 coordinates with the carbonyl group of 5 syn to the 
(small) methyl group.5 With 0.2 equiv of 3, 5 is no longer able 
to compete with 2 for monomeric 1. The sum of eq 3 and 4 is 
equivalent to eq 2, thereby allowing 3 to play a catalytic role. Also 
note that the geometry of 2 is such that the incoming borolane 
1 is oriented in the manner shown in 7, reminiscent of the transition 
state involved in the highly enantioselective hydroboration of a 
trisubstituted alkene.2 

(5) Reetz, M. T.; Hullmann, M.; Massa, W.; Berger, S.; Rademacher, P.; 
Heymann, P. J. Am. Chem. Soc. 1986, 108, 2405. 
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